THERMOPHYSICAL PROPERTY NEEDS INTO THE 21ST CENTURY: PETROLEUM REFINING AND PETROCHEMICAL INDUSTRY VIEW

Constantine Tsonopoulos* and John L. Heidman

Exxon Research and Engineering Company Florham Park, New Jersey, USA

13th SYMPOSIUM ON THERMOPHYSICAL PROPERTIES Boulder, CO, USA

June 22-27, 1997

ACKNOWLEDGMENTS

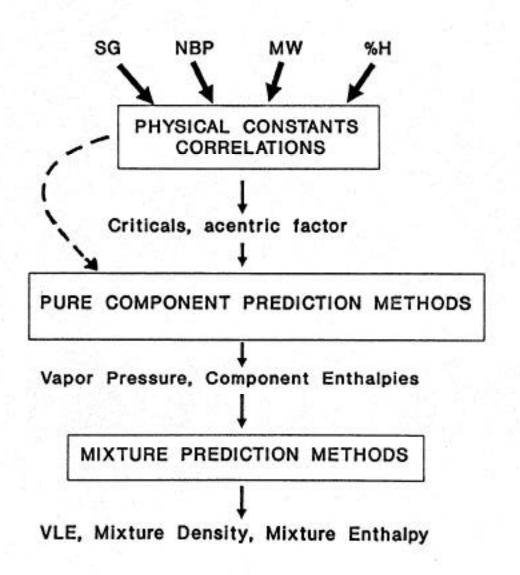
Exxon: Charlie Cozewith

Ralph Gray Mike Muhle

John Rosandich

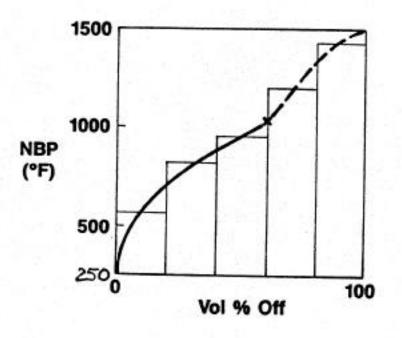
Air Products: Paul Mathias

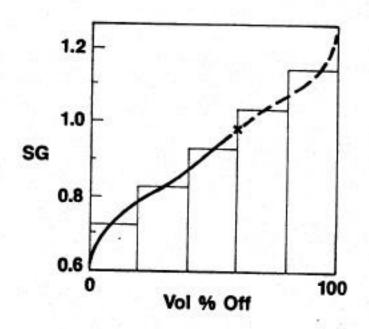
Mobil: B. I. Lee


Phillips: Bill Parrish

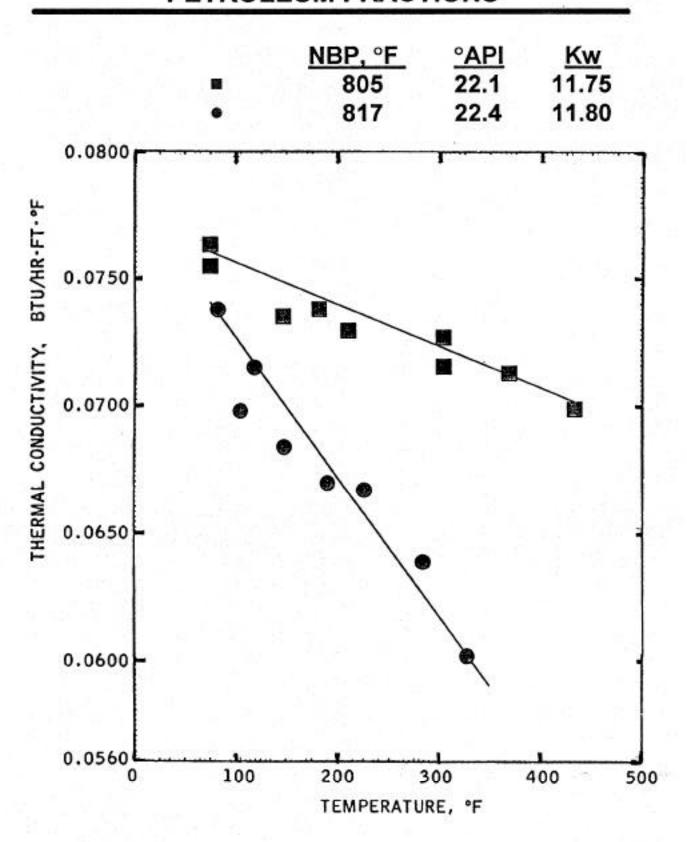
Union Carbide: Evan Buck

MAJOR NEEDS

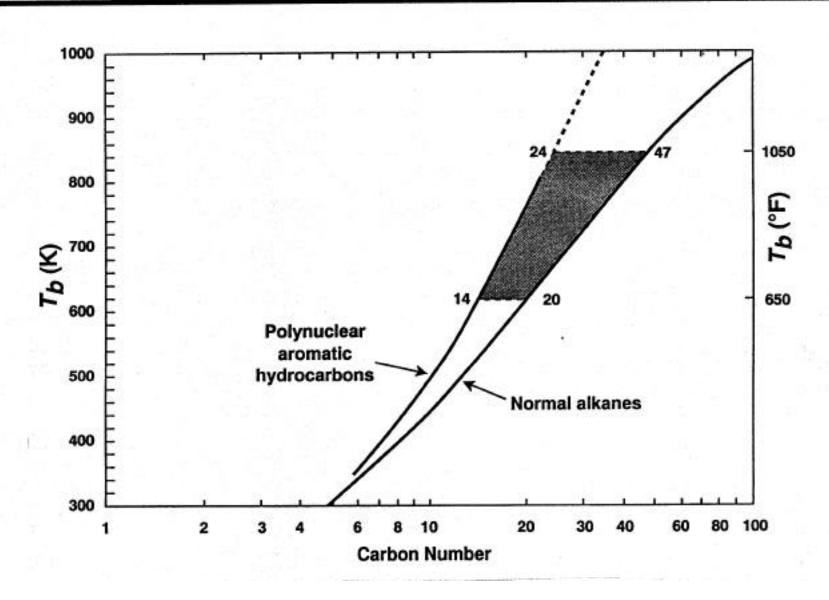

- Petroleum Refining
 - + H₂ → 1500 °F NBP
 - + mostly hydrocarbons with 1-2 wt% S; 0.1 0.2 wt% N; < 0.1 wt% 0</p>
 - + major need: heavy hydrocarbons, NBP > 800 °F (700 K)
- Petrochemicals
 - + nonpolar (e.g., olefins)
 - + polar (e.g., water, alcohols, polyalcohols, ether alcohols)
 - + major need:
 - complex polyfunctional polars
 - polymers
- Characterization... Properties... Modes of data generation


CHARACTERIZATION IS THE SELECTION OF MEASURABLE PROPERTIES USED TO PREDICT ALL OTHER PROPERTIES

CURRENT METHODS OF PROPERTY PREDICTION


Pseudocomponet Breakdown by NBP (Lab Still)

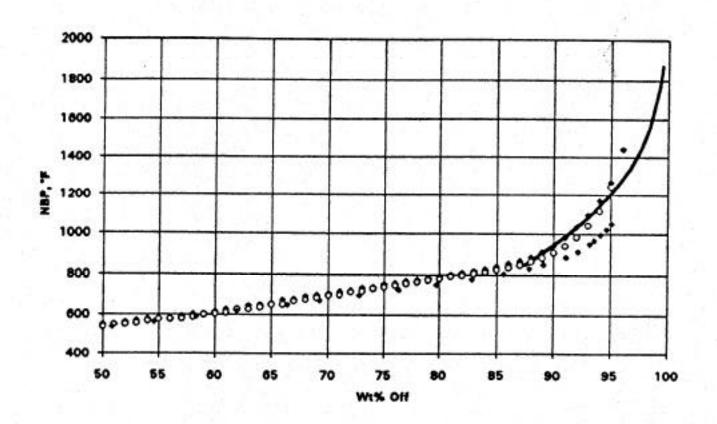
- NBP, SG Characterize Narrow Fractions
- Wide Boiling Range Cuts Treated as Mixtures
- Property = function (NBP, SG)
- Problems for Residua, Highly Aromatic Synfuel or Converted Fractions


THERMAL CONDUCTIVITY OF TWO SIMILAR PETROLEUM FRACTIONS

PETROLEUM HYDROCARBON CHARACTERIZATION--WHERE IS IT GOING?

- Current framework limited to NBP (MW?) and SG
 - + more info readily available via new analytics (e.g., GC-MS)
- Typically front-end components identified through C₅
 - + C5+ characterized by NBP/SG via distillation up to 1050 °F
- Analytics extending front-end to C₁₀ and beyond -- many isomers!
 - Need experimental data, reliable predictions -- for component properties first, then mixtures
 - May be a practical limit in number of components

CARBON-NUMBER RANGE OF HYDROCARBONS IN PETROLEUM CRUDE



PETROLEUM HYDROCARBON CHARACTERIZATION--WHERE IS IT GOING?

- Current framework limited to NBP (MW?) and SG
 - + more info readily available via new analytics (e.g., GC-MS)
- Typically front-end components identified through C₅
 - + C5+ characterized by NBP/SG via distillation up to 1050 °F
- Analytics extending front-end to C₁₀ and beyond -- many isomers!
 - Need experimental data, reliable predictions -- for component properties first, then mixtures
 - + May be a practical limit in number of components
- New techniques extending back-end NBP's to 1300 °F (endpoint > 1500 °F)
 - + Molecular complexity suggests that
 - full component characterization not feasible
 - but need more than NBP/SG to describe heavy hydrocarbons

A VARIABLE END POINT IN PLACE OF 1500 °F

Even a light crude (< 10 wt% has NBP > 1050 °F) can have an EP > 1500 °F

PETROLEUM HYDROCARBON CHARACTERIZATION--WHERE IS IT GOING?

- Current framework limited to NBP (MW?) and SG
 - + more info readily available via new analytics (e.g., GC-MS)
- Typically front-end components identified through C₅
 - + C5+ characterized by NBP/SG via distillation up to 1050 °F
- Analytics extending front-end to C₁₀ and beyond -- many isomers!
 - Need experimental data, reliable predictions -- for component properties first, then mixtures
 - + May be a practical limit in number of components
- New techniques extending back-end NBP's to 1300 °F (endpoint > 1500 °F)
 - + Molecular complexity suggests that
 - full component characterization not feasible
 - but need more than NBP/SG to describe heavy hydrocarbons
 - + Data needed for heavy model components to define characterization basis
 - API 42 provides a good starting point

ANALYSIS OF API 42 DATA

- Volatility, melting point, and viscosity index
 - + Key properties of lubricants
 - + VI is inversely related to Temp. Dep. of kinematic viscosity
- Volatility is strongly related to molecular size
 - + Easiest property to correlate
- Melting point and VI are strongly related to molecular structure
 - + Dependence on structure differs for two properties
 - + MP depends on ability of molecule to fit into 3-D network
 - + VI is primarily affected by molecular flexibility
- What structural parameters can quantify
 - + Ability of a molecule to fit into a 3-D network?
 - + Molecular flexibility?

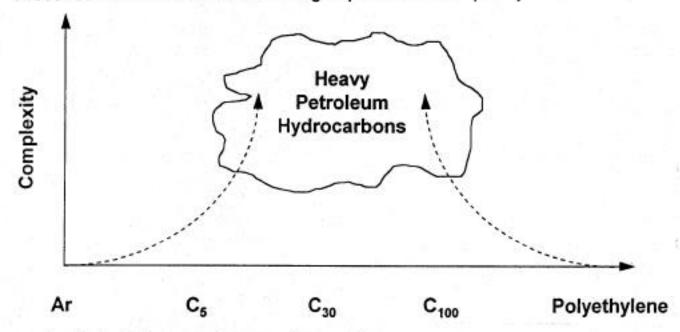
CHARACTERIZATION OF POLARS

- Models still based on 3-parameter CS concepts with extensions
- Proposed extensions include
 - + Alternative and/or multiple reference fluids
 - + 4th CS parameter--dipole moment, polarizability

$$\mu' = \mu + \alpha \cdot f(\rho)$$

- Self-association contributions
- Not much progress made for typical engineering applications
 - + One exception is area of group-contribution-based models
 - ⇒ Mostly success for pure component properties (e.g., ideal gas properties, liquid density)
 - ⇒ Limited success for mixtures (e.g., activity coeff. via UNIFAC)
 - ⇒ Limited/no use for heavy HC's in current charact. framework

EXAMPLE: PENTAERYTHRITOL


- Can pure-component properties be predicted?
 - + Benson's method probably adequate for ideal-gas properties
 - Correlations for most other properties too unreliable
- Can VLE/LLE/H^{ex} properties be predicted?
 - UNIFAC (or ASOG) not reliable for polyfunctional polar compounds
 - Limitations due to lack of experimental data and understanding of intramolecular effects
- Computational chemistry may lead to rigorous group-contribution models that account for intramolecular effects

CHARACTERIZATION OF POLYMERS

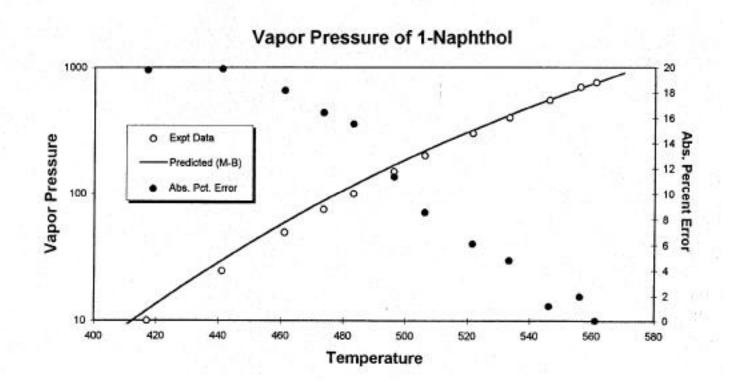
- Different approach dictated by available data--and properties needed
 - + MW and liquid density may be available
 - + NBP or critical properties do not exist
- Characterization parameters typically are property and model specific
 - + E.g., P-V-T data ⇒ P*, V*, T* in 3-parameter CS (Prigogine, Flory)
 - + CS parameters are not "universal"
- Polar contributions may be included via model parameters
 - Self- and cross-association terms in SAFT EOS

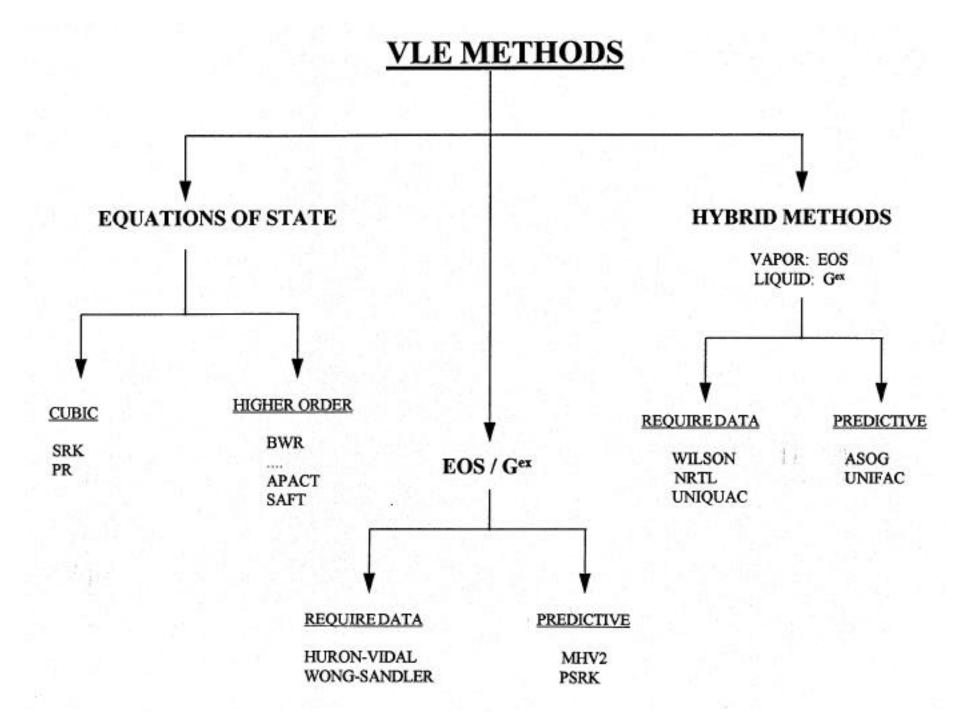
CAN POLYMER THEORY PROVIDE GUIDANCE IN HEAVY HC CHARACT.?

- Polymers are structurally well-defined but high MW (up to 10⁶)
 - + Typical properties are MW, liquid density, melting point (?)
 - + Cannot link to defined compounds (via Tc) or petroleum hydrocarbons (via NBP)
- Petroleum heavy ends are structurally complex (ill-defined) and lower MW (up to 10⁴)
 - + Presence of heteroatoms/functional groups adds to complexity

- At present, only limited connections can be made
 - + e.g., extension of normal alkanes to polyethylene as CN gets large
 - + Other opportunities?

THERMOPHYSICAL PROPERTY NEEDS FOR DESIGN

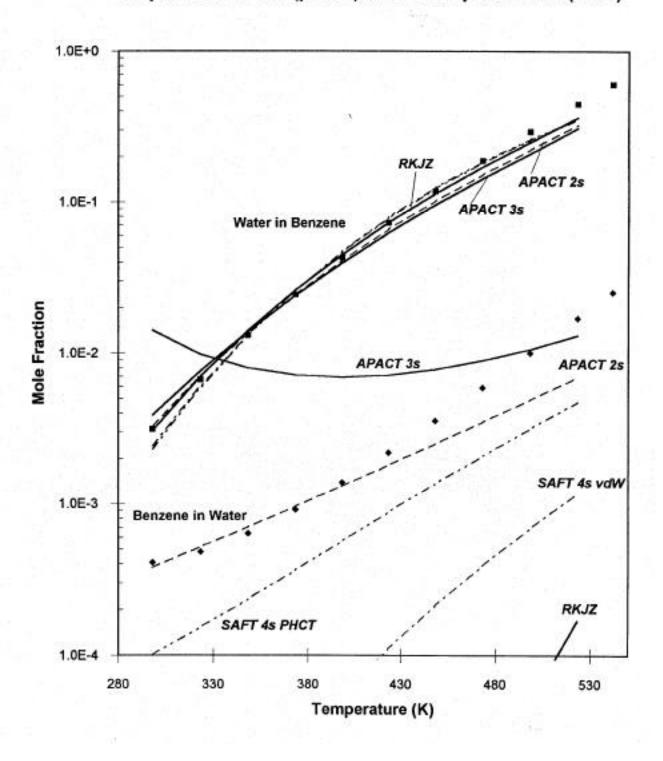

- First and most important use of thermophysical properties is in heat and material balance calculations
 - Uncertainties in data/predictions directly affect results
 - Three essential properties:
 - Vapor-Liquid Equilibria
 - + Enthalpy
 - + Density (P-V-T)
- Emphasis on VLE (include vapor pressure) due to importance of distillation in separations
 - If separation by extraction, LLE become important
- Enthalpy includes heat capacity, heat of vaporization, heat of mixing, AND heat of reaction


VAPOR PRESSURE PREDICTIONS

- Key property in VLE calculations
- Corresponding states models most common
 - + Require critical properties, acentric factor (or Riedel alpha)
 - + For fractions (NBP/SG), Maxwell-Bonnell (M-B) is "standard"
 - Predict VP directly
 - Alternatively, use M-B to initialize C-S model
- Maxwell-Bonnell VP for petroleum fractions
 - + one VP (NBP or some other P<1 atm) and average SG
 - + Frequently extrapolated to high-boiling (1050 °F+) components
 - Limited VP data available to C₄₃
 - + Large errors for polar fractions (e.g., phenolics in coal liquids)

WHAT ABOUT VP OF POLARS?

- · C-S models proposed
 - + 4-parameter
 - + Alternative reference fluids
- Can VP of polars be superimposed on M-B for fractions?
 - + Correlate delta with, e.g., polarizability and/or dipole moment



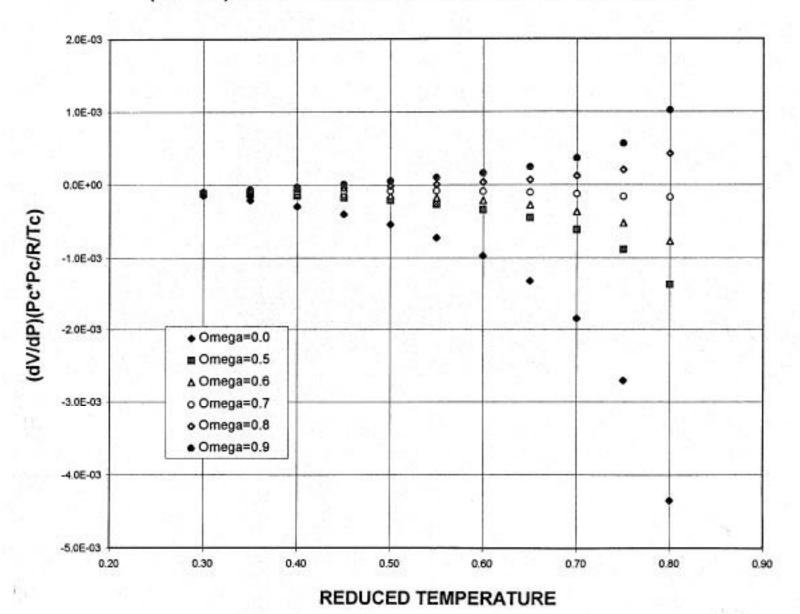
VLE (VLLE) PREDICTIONS FOR HYDROCARBON SYSTEMS

- Equations of state cubic
 - + Can go far with vdW mixing rule, one binary parameter
 - H₂/HC; water in HC
 - + However, significant limitations exist
 - HC in water; NBP's > 1050 °F (vdW mixing breakdown?)
 - Polars restricted to low-concentrations
- · Equations of state higher order
 - + Previous generation: BWR (limited to light ends)
 - + Current generation: PHCT, PACT, SAFT (light ends to polymers)
 - Include association contributions -- still not quantitative for HC/water

Water / Benzene Liquid-Liquid-Equilibria Experimental data (points) and model predictions (lines)

VLE (VLLE) PREDICTIONS FOR HYDROCARBON SYSTEMS

- Equations of state cubic
 - + Can go far with vdW mixing rule, one binary parameter
 - H₂/HC; water in HC
 - + However, significant limitations exist
 - HC in water; NBP's > 1050 °F (vdW mixing breakdown?)
 - Polars restricted to low-concentrations
- Equations of state higher order
 - + Previous generation: BWR (limited to light ends)
 - + Current generation: PHCT, PACT, SAFT (light ends to polymers)
 - Include association contributions -- still not quantitative for HC/water
 - SAFT extensively applied to polymer phase equilibria
 - Potentially better for heavy hydrocarbons (NBP > 1050 °F)
 - + Arguably, area of greatest recent advances -- but still in infancy


VLE (VLLE) PREDICTIONS FOR HYDROCARBON SYSTEMS (Cont)

- Hybrid Methods -- EoS (Vapor) + G^{ex} (Liquid)
 - + Handle polars at low pressure (away from critical region)
 - Data required for G^{ex} parameters
 - Group-contribution methods (ASOG, UNIFAC) for prediction
 - + Some methods (Gex) applicable to polymer solutions
 - + Limitations for polyfunctional polars -- GC does not work
 - Opportunity for computational chemistry to build better models
- Equations of State with G^{ex} Based Mixing Rules
 - + Cubic EoS + G^{ex} model (e.g., NRTL, UNIFAC)
 - + Data needed for parameters (e.g., H-V, W-S) or predictive (e.g., PSRK)
 - + For predictive models, new groups required for light gases
 - + Cannot be used for polymers -- EoS require criticals, VP

ENTHALPY AND DENSITY PREDICTIONS

- Next to VLE, most important properties in H&MB calcs
- Corresponding-states models most common
 - + Again, based on criticals, acentric factor
 - NBP/SG correlations still available for petroleum (e.g., API TDB)
- Lee-Kesler (1975) generally used for
 - + PVT and H (vapor phase), H (liquid); COSTALD for PVT (liquid)
 - + Heavy components (CN >> 10)
 - + Polars also (low concentrations ?)
- L-K has significant limitations
 - Poor density, C_P at low T_R
 - + (∂V/∂P)_T is positive for CN > 15
 - General problem for properties not linear in acentric factor

(dV/dP) AT SATURATION VIA LEE-KESLER EOS

ENTHALPY AND DENSITY PREDICTIONS

- Next to VLE, most important properties in H&MB calcs
- Corresponding-states models most common
 - + Again, based on criticals, acentric factor
 - NBP/SG correlations still available for petroleum (e.g., API TDB)
- Lee-Kesler (1975) generally used for
 - + PVT and H (vapor phase), H (liquid); COSTALD for PVT (liquid)
 - + Heavy components (CN >> 10)
 - + Polars also (low concentrations ?)
- L-K has significant limitations
 - + Poor density, C_P at low T_R
 - + (∂V/∂P)_T is positive for CN > 15
 - General problem for properties not linear in acentric factor
- Potential Enhancements?
 - Improved ref. fluid EOS (must extrapolate below MP!)
 - + 2nd order effects (non-linear acentric factor dependence)
 - + Others?

THERMOPHYSICAL PROPERTY NEEDS FOR EQUIPMENT DESIGN

- Transport Properties (Especially Viscosity and Thermal Conductivity) and Surface Tension are Primarily Used in Design of Equipment
- Highly Accurate Data Might Not be Needed
 - Property May Have Little Influence on Equipment Size
 - + Value may not vary much
 - Property is frequently raised to a fractional power
 - Model Based on Low-Quality Data May Not Benefit From High-Quality Data
 - + Model for equipment design should be revised with high-Q data
 - Fouling of Equipment Diminishes Effect of Properties
 - Allowance must be made for fouling (which cannot be quantified)

SURFACE TENSION OF PURE COMPOUNDS

- Two Types of Models
 - Corresponding-States

$$\sigma = \sigma_o (1 - T_r)^b$$

 σ_0 , b are adjustable parameters

- + $\sigma_0 = \sigma$ at O K; $\sigma_0 = f(K_w)$ for petroleum fractions
- Parachor Method

$$\sigma = \left[\frac{[P]}{M} (\rho^{L} - \rho^{V})\right]^{4}$$

where [P] = parachor of compound

- + a constant for hydrocarbons
- + a function of temperature for polars

SURFACE TENSION OF MIXTURES

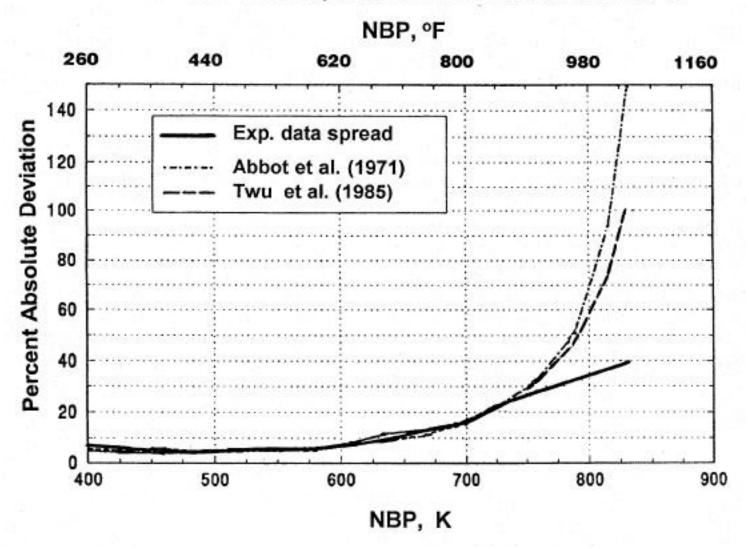
For mixtures of hydrocarbons: Weinaug-Katz equation

$$\sigma_{m} = \sum_{i} \left[[P]_{i} \left(\frac{x_{i} \rho^{L}}{M^{L}} - \frac{y_{i} \rho^{V}}{M^{V}} \right) \right]^{4}$$

- VLE Flash Calculation Must Be Performed <u>First</u> to Obtain Equilibrium y and x
- For polar mixtures: Weinaug-Katz equation doesn't work
 - No general method for polar mixtures
- Rigorous treatment (e.g., Sprow and Prausnitz, 1966) requires bulk and surface activity coefficients, component surface areas

TRANSPORT PROPERTY PREDICTIONS (VISCOSITY)

- Available models relatively "primitive" -- benign neglect?
 - + Pure component properties with blending (liquid only)


KINEMATIC VISCOSITY OF PETROLEUM FRACTIONS

Modified Walther equation is refining industry standard

$$\begin{aligned} \log_{10}\log_{10}(v+c) &= a + b\log_{10}T \\ c &= 0.7 \text{ for } v \ge 2 \text{ cSt; } f(v) \text{ for } v < 2 \text{ cSt} \\ T \text{ is absolute temperature} \end{aligned}$$

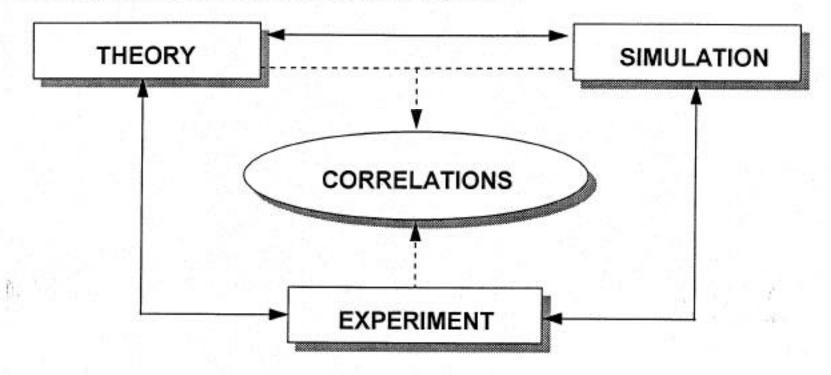
- Measurement (or prediction) of KV at two temperatures is minimum required information
 - + Various correlations for KV at 100, 210 °F: Abbott (1971), Twu (1985), etc.
 - For vacuum residua (NBP > 1050 °F [840 K]), best to measure KV at least at three temperatures

Kinematic Viscosity of Petroleum Fractions at 100° F

TRANSPORT PROPERTY PREDICTIONS (VISCOSITY)

- Available models relatively "primitive" -- benign neglect?
 - + Pure component properties with blending (liquid only)
 - + Reduced density C-S (Vapor only)
 - + Other C-S models (L-K like) not successful
- TRAPP model (1981) most widely used in refining and petrochemical industry
 - Handles both liquid and vapor phases, mixtures of lights and "heavies"
 - + Extended to include petrochem fluids (Baltatu et al., 1982, 1996)
 - + Large errors for CN ≥ 10. What about CN >> 10?
- What about Polars?
 - + Group-contribution methods for (simple) polars (e.g. Van Velzen)
 - + Lacking generalized mixture models
- Polymers ??
 - No predictive models
 - Greater dependence on shear (which cannot be generalized)

TRANSPORT PROPERTY PREDICTIONS (THERMAL COND.)

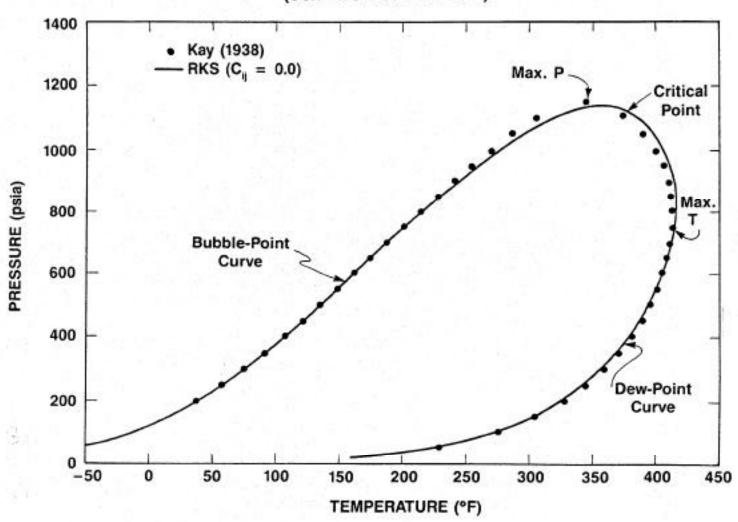

- Generally, less important than viscosity
- Available models very primitive
 - + E.g., universal linear-temp model for petroleum (API TDB)
 - Other models similar to those for viscosity
- Again, TRAPP (1983) most widely used in refining / petrochemical industry
 - + Large errors for CN ≥ 10... Data sparse for non-alkanes
- Polars
 - + Methods available for (simple) pure components
 - + Mixture models invoke simple blending... cannot handle dissolved gases
- Polymers
 - Little known--and even less is used in industry

INTEREST IN DIFFUSION COEFFICIENTS?

- Generally, the property that is least discussed in process design
 - + 20% uncertainty is considered acceptable
 - More detailed process design of mass-transfer equipment may raise importance
- Recent focus on FT process has also raised interest in diffusion coefficients
 - + (D_{H2} H_{CO}) / (D_{CO} H_{H2}) in paraffins is important process parameter; H_i is Henry's constant
- Density, viscosity, and diffusion coefficient: experiment vs. molecular simulation
 - Experimentally, density is easiest and diff. coeff. is most difficult to measure
 - In simulation, it's the other way around: diff. coeff. is easiest to model

INTO THE 21ST CENTURY - THEORY/MODELING/EXPERIMENT

From refining/petrochemical industry perspective



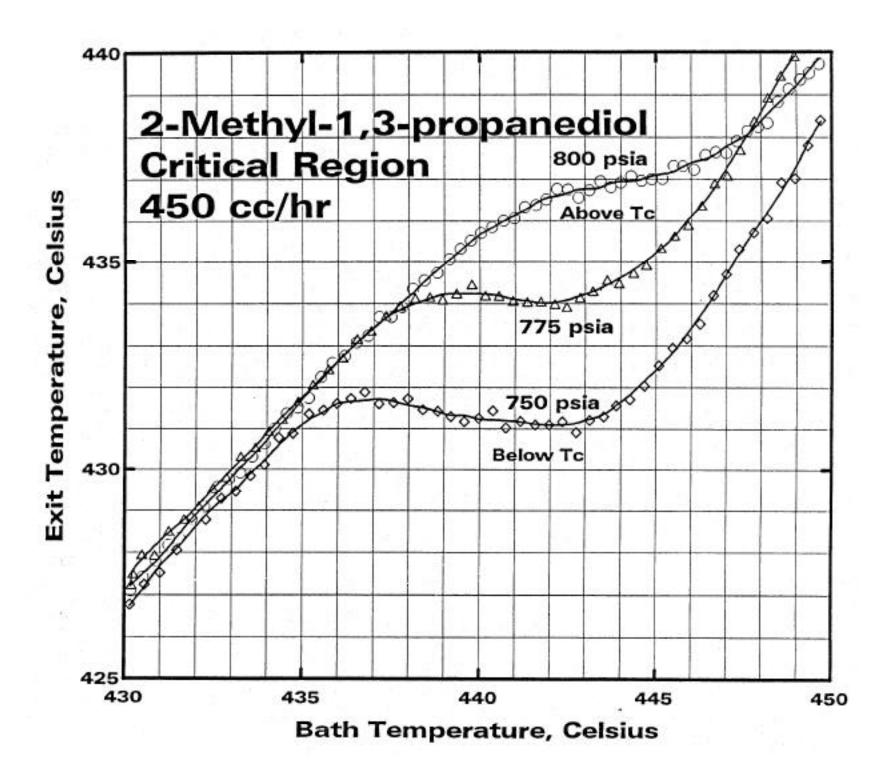
- Experiment provides necessary foundation (the "truth"!)
- Theory and simulation provide physically-based framework
 - Without this, we would be left only with empirical correlations

MOLECULAR SIMULATION... COMPUTATIONAL CHEMISTRY

- Significant advances...commercially available tools
- Molecular Simulation
 - + An important tool for the 21st century
 - Perhaps not for things we can do well today (Example: C₂/C₇ P-T envelope)?

P - T ENVELOPE OF ETHANE/n-HEPTANE (58.7 MOL % ETHANE)

MOLECULAR SIMULATION... COMPUTATIONAL CHEMISTRY


- Significant advances...commercially available tools
- Molecular Simulation
 - + An important tool for the 21st century
 - Perhaps not for things we can do well today (Example: C₂/C₇ P-T envelope)?
 - Very useful for "measuring" what we cannot do in the laboratory:
 - ⇒ H₂O/HC phase behavior inside pores
 - Also useful for developing better models, EOS
- Computational (Quantum) Chemistry
 - + Already used in reaction chemistry
 - May provide a rigorous basis for identifying functional groups in group contribution methods (Sandler's group)

EXPERIMENTAL DATA WILL STILL BE NEEDED!

- · "Good data are forever!"
- · Data neded on systems and conditions of interest

VERY LOW RESIDENCE TIME METHODS

- Nikitin et al. (1993): 10⁻⁵ to 10⁻³ s
 - Critical points of unstable substances with a pulse-heating method (temperature of attainable superheat approaches T_c)
 - Critical points of normal alkanes up to C₂₄; polyethylene glycols
- Wilson (1997): 0.1 s from room to system T
 - + Critical points and vapor pressures with new flow method
 - NBP up to ~C₃₅; CP up to ~C₃₀
 - Method can possibly be used for other properties; e.g., heat capacity

EXPERIMENTAL DATA WILL STILL BE NEEDED!

- "Good data are forever!"
- Data neded on systems and conditions of interest
- + Even for well-known processes
 - Tighter designs require data of ever higher quality
 - Technical challenges can still be found in common processes

PHASE EQUILIBRIA ISSUES IN THE ETHYLENE PROCESS

- Superfractionation (α ~ 1.1)
 - High accuracy needed in relative volatility (α) to reduce uncertainty in stages or reflux (α-1)
 - + 5% uncertainty in stages or reflux requires <0.5% uncertainty in α
- Cold Box (Low-Temperature Flash Separators)
 - + Temperatures down to 100 K, moderate pressures (30-40 bar)
 - + Distribution of contaminants (e.g., acetylene, NH₃, NO_x)
- Cold Box Safety Concerns -- Explosive Solids!
 - + Acetylene: VLE → SLE
 - + NO_x (+NH₃): VLE → SLE + chemical reaction → N₂O₃, NH₄ NO₃
 - Absolutely need experimental data!

EXPERIMENTAL DATA WILL STILL BE NEEDED!

- "Good data are forever!"
- Data neded on systems and conditions of interest
 - + Even for well-known processes
 - Tighter designs require data of ever higher quality
 - Technical challenges can still be found in common processes
 - Predictions for complex polars and polymers not yet reliable for design, process optimization
- But data may not be needed for
 - + Ar (except for VLE in heavy hydrocarbons)
 - + VLE of ethanol/water (at 25 °C)
 - + Thermal conductivity of toluene

SEPARATION AND PURIFICATION Critical Needs and Opportunities

(NRC, 1987)

- Separations research, development, and design are often hampered by a lack of reliable physicochemical data
 - NIST is a logical focal point for coordinating the collection, evaluation, and dissemination of physicochemical data on separations
- Industrial support of separation research
 - Industrial R&D projects are highly application-specific and often have proprietary elements
 - Industrial research efforts cannot be expected to shoulder a significant portion of generic, more fundamental research
 - Support of generic research should come from the government